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Pressure-forcing of tightly fitting pellets along 
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Some insight into the behaviour of tightly fitting solid pellets, which may be 
deformable, and are being forced by a pressure difference to move slowly along 
a distensible tube filled with viscous fluid, is sought by theoretical study of a 
simple axisymmetric model ($2) .  In this, the pellet’s clearance in the tube is 
taken to be a small fraction of the tube radius; the fraction may, at a pressure 
characteristic of that ahead of the pellet, be either positive or negative. Even 
if it is positive, the tube may still be distended (or the pellet compressed, or 
both) as the pellet passes, because the thickness of lubricating film generated may 
exceed the clearance. Naturally, still greater elastic deformation can occur in the 
case of negative clearance. 

Highly simplified elastic properties are assumed; with an eye on tubes occur- 
ring in physiological systems (with Poisson’s ratio close to 0.5) ,  the local disten- 
sion of the tube is taken to vary linearly with the local excess pressure; as a still 
cruder approximation, a similar relation for local reduction of pellet radius is 
assumed. A parabolic approximation to the pellet’s undistorted meridian section, 
in the region where the lubricating film is thin, is also assumed, leading to a simple 
relation between pressure and local film thickness which is used, together with 
Reynolds’s lubrication equation, to evaluate both. An arbitrary constant, the 
rate of leakback of fluid past the pellet, is determined by the condition that the 
pressure difference forcing the pellet must just balance the skin-frictional re- 
sistance to its motion. 

The problem is non-dimensionalized ($3)  and reduced to that of finding a 
particular solution of a differential equation containing a certain parameter L. 
In  addition to numerical solutions for particular values of L ( §  G ) ,  perturbation 
solutions for both small and large L are obtained ($0  4 and 5 ) ,  to give mathematical 
and physical insight; the perturbation for large L (corresponding to negative 
clearance) is highly singular, requiring the matching of approximate solutions 
different in each of six different layers. 

A striking feature of the solutions is a necking of the gap between pellet and 
tube behind the pellet. This is so pronounced in the case of negative clearance 
(figure 2 )  that it might give the false impression that the pellet was being propelled 
by peristaltic contraction of the tube instead of by fluid pressure gradient. The 
physical reason for this is elucidated ( 9  6). 

In  the case of positive clearance, rather small pressure differences suffice, on 
this theory, to propel the pellet, because different parts of the lubricating layer 
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act on it with frictional resistances of different signs, which almost cancel out. 
By contrast, for negative clearance, the resistance becomes a large multiple of 
that found in a purely fluid-filled tube of length and mean velocity equal to that 
of the pellet. This multiple increases, and the film thickness correspondingly 
decreases (figure 7), as the pellet velocity decreases. 

One physiological system on which the model may throw some light is the 
narrow capillary with red blood cells being squeezed through it in single file, 
lubricated by plasma ( $ 5  1 and 8). At the higher flow speeds, around 0.1 mm/s, 
the lubricating film, predicted to be about 0.2 pm thick, appears likely to play a 
significant role in mass transfer to and from the tissue spaces. At much lower 
speeds, predicted film thicknesses are so small that any of a number of mechan- 
isms, including loss of fluid through the porous capillary wall due to the local 
excess pressure in the layer, might cause movement to ‘seize up ’ altogether. 

1. Introduction 
There are many biological systems in which relatively tightly fitting pellets of 

solid matter are forced along distensible tubes. In  some of them, such as the 
gastro-intestinal system, the motion may be generated by waves of peristaltic 
muscular contraction passing along the tube. In  others, with which this paper 
is concerned, the motion is generated passively by pressure differences in a fluid 
with which (in addition to the pellets) the tube is filled. 

An example of this on a microscopic scale is the movement of blood through 
very narrow capillaries. The human red blood cell in the unstressed state is a 
biconcave disk of diameter about 8pm, but under stress is rather easily deformed 
(Prothero & Burton 1962b; Rand & Burton 1964). The narrowest capillaries, 
which are thought by contrast (Fung 1966) to be much less compliant, have an 
internal diameter of 5 to 10 /Am. The red cells typically occupy 45 % of the blood 
volume, most of theremainder being occupied by aviscous fluid, the blood plasma. 

Although whole blood possesses anomalous flow properties, such as might be 
expected of a concentrated suspension of solid matter in fluid, evidence is ac- 
cumulating that the blood plasma is a Newtonian viscous fluid to a close approxi- 
mation. In  particular, Gabe & Zatz (1968) showed that experiments once believed 
to suggest a contrary conclusion had been misleading owing to surface effects. 
When these were eliminated, the amplitude and phase of particle movements in 
oscillatory azimuthal flow between concentric cylinders agreed very accurately 
with calculations for a Newtonian fluid. 

These considerations indicate that blood flow through a narrow capillary must 
involve the passage of individual red cells in single file along it, each separated 
from the one in front by what Prothero & Burton (1961, 1962a) described as a 
‘ bolus ’ of viscous fluid. This motion in single file can, in appropriate tissue, be 
observed under a microscope. It must be expected that the cells are deformed 
elastically to enable them to pass through the tube, which may also itself suffer 
some small elastic distension. 

The purpose of this paper is to get some qualitative and quantitative insight 
into the special problems of flow in tubes under these conditions, including con- 
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sideration of the lubricating film of plasma which must be present between each 
red cell and the tube wall. This film is potentialIy important in regard both to mass 
transfer and to hydraulic resistance, as well as to the relative residence times of 
red cells and plasma in the capillary network. 

Mass transfer of dissolved gases between pulmonary capillaries and alveoli, 
or between systemic capillaries and tissue spaces, is evidently of great importance. 
Forster (1963) has emphasized, moreover, that the pulmonary membrane’s 
impedance to transfer of dissolved gases is not so great that impedance of path- 
ways within the capillaries can be neglected (see p. 842, where the ‘diffusing 
capacities ’ of which he speaks are effectively reciprocals of impedances); in 
particular, he argues that gas ‘tensions’ (what a physical chemist would call 
their ‘fugacities’, and which coincide in dilute solution with their vapour pres- 
sures) cannot be supposed simultaneously to take approximately equal values at  
a11 points in the capillary plasma and at  red-cell surfaces. 

Prothero & Burton (1961) pointed out that the bolus of viscous plasma be- 
tween two red cells must perform, relative to their motion, a toroidal circulation, 
forward on the tube axis and backward near the walls; and that this motion must 
play a role in limiting differences in gas tensions, and, generally, impedance to 
mass transfer within the capillaries. It can, however, be argued (see below) that 
motions within the lubricating flm may play aneven greaterrolein these respects. 

The relative significance of convection, as compared with simple diffusion, 
depends on the value of a PBclet number Ud/D, where U is a mean velocity, d 
the tube diameter and D the diffusion coefficient. This takes values of order 1 
when the orders of magnitude of U ,  d and D are 0.1 mm/s, 10pm and 10-3mm2/s. 
Prothero & Burton showed in model experiments using heat transfer in water 
that transfer is considerably augmented by convection at  such values of the 
PBclet number, although inertial effects may have caused some slight enhance- 
ment of the toroidal vortical motion in their experiments as compared with 
microcirculatory flows where the Reynolds number pUd/,u is less than 10-2. 

Within the systemic capillaries, transfer of complex molecules including 
proteins may be influenced to a greater extent still by convective motions, owing 
to the very considerably lower values of diffusion coefficients which they in 
general possess. Landis & Pappenheimer (1963) refer to the distribution and rate 
of flow of capillary blood as essential factors in such diffusion. Shearing motions 
in a thin lubricating film may be rather effective in this respect. 

Some mass transfer into the tissue spaces is viewed as occurring not diffusively 
but convectively, the walls of the systemic capillaries being to some extent per- 
meable to liquid through pores of diameter around 8nm (Guyton 1966). At the 
upstream end of a narrow capillary, some fluid (although less than 1 yo of the total 
flow) may be forced out by the relatively high pressure,t and the same fluid, 
after movement through the tissue spaces and some chemical alterations, may 
be sucked in later by the relatively low pressure in the downstream end of the 
tube (with the exception of a small proportion returning through the lymphatic 

t Large enough to overcome a combination of the mechanical pressure external to the 
capillary and the opposing difference of osmotic pressure of plasma proteins too large to 
penetrate pores. 
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circulation). But the present study reminds us, additionally, that elevated pres- 
sures where an individual red cell is squeezed against the capillary wall may 
possibly do some more local forcing out of fluid, which can return through un- 
stressed parts of the tube wall. 

A hydrodynamicist might suppose the hydraulic resistance of the narrowest 
capillaries to be a factor of great importance in determining overall resistance of 
the vascular bed, but this is not so, because their extremely low individual 
conductances are enormously multiplied, in effect, by there being such large 
numbers of them in parallel. The branchings in the cardiovascular system succeed 
in economically distributing the blood to a very large mass-transfer area while 
normally avoiding flow separation and regions of ‘dead fluid’, which might in 
fact be deleterious for various reasons (see, for example, Roach (1963,1964) for 
evidence of damage to arterial walls by rapid turbulent pressure fluctuations 
resulting from flow separation). Because in the arteries the velocity drops at  each 
branch by not more than 20%, separation is normally avoided; the pressure 
gradients predicted by Poiseuille’s law increase under these conditions at  each 
branching. In  the arterioles and capillaries, however, Reynolds numbers are of 
the order of 1, or considerably less, and separation is accordingly most unlikely 
to occur, even with the much greater velocity reductions which (whether or not 
for this reason) occur a t  typical arteriolar and capillary branchings. Now, at a 
branching, pressure gradients predicted by Poiseuille’s law decrease for such 
velocity reductions of more than 30% (McDonald 1960). These considerations 
are rightly regarded as strong evidence that the larger arterioles, with diameters 
of the order of 0-lmm, give the biggest contribution to the resistance of the 
vascular bed; it is, furthermore, changes in their diameters (by action of vaso- 
motor muscles) which mainly control the flow, and alter the rates of perfusion of 
different parts of the capillary circulation. 

Nevertheless, capillary resistance could not necessarily be neglected if for any 
reason it was much greater than the value indicated by Poiseuille’s law. Prothero 
& Burton (19624 estimated from their model experiments the pressure drop in 
the ‘ bolus ’ of moving plasma between two red cells and deduced a contribution 
to overall capillary resistance less than that given by Poiseuille’s law, mainly 
because plasma with red cells separated out has a viscosity considerably lower 
than typical values measured for whole blood. 

The present studies indicate, however, that the additional contribution to 
capillary resistance from the pressure difference needed to push a red cell against 
the viscous drag associated with the lubricating film can, under some conditions, 
be much greater than that given by Poiseuille’s law. Especially when velocities 
of motion are low, film thicknesses are predicted to be very small and resistance 
correspondingly high. The possibility is suggested, therefore, as a t  least worth 
investigation, that throttling the arterioles may be particularly effective because, 
a t  the lower flow speeds that result, there is also a substantial increase in capillary 
resistance. 

Hydrodynamic lubrication is often observed to break down when the film 
thickness demanded by the dynamics is too small. Opposing roughness elements 
on the sliding surfaces may then engage so that the motion ‘seizes up’ altogether. 
In  the present case, the slow forcing of fluid through the tube wall in regions of 
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elevated pressure might produce a further reduction of film thickness and facili- 
tate this seizing-up process. 

Liquid films are essential, in fact, to permit free sliding (which is impossible 
even to skaters on ice too cold to allow such a film to form under the pressure 
of their skates). A plasma film will form to lubricate the red cell’s passage if this 
is dynamically possible. The red cell and capillary wall are covered with lipid 
membranes, but their surfaces are relatively hydrophilic; thus Zubairov, 
Repeikov & Timerbaev (1963) showed that plasma ‘wets’ the capillary wall, 
having an angle of contact around 20”. Certainly, such hydrophilic fatty surfaces 
as soaps lose their slipperiness in the absence of a water film. 

It is well known that arterioles can be throttled to such an extent that capillary 
motion stops altogether. Under conditions of high vasomotor tone this may be 
due to throttling actually stopping motion through the relatively easily con- 
stricted arterioles. The present work suggests that another mechanism may under 
other conditions operate : namely that when flow speeds are sufficiently reduced 
hydrodynamical lubrication in the capillaries gets replaced by solid friction, 
which can support differences of pressure without the red cells moving at  all. 

The ‘residence times ’ of red cells in the capillary network are on the average 
much shorter than those of plasma; indeed, the statistical distributions of resi- 
dence times of red cells and plasma hardly seem to overlap, indicating that the 
plasma close to an arterial red cell is, when the cell reaches the veins, all left far 
behind it. The leakback here studied is an important mechanism for giving plasma 
a lower mean velocity than red cells in capillaries, while the process known as 
‘ axial concentration ’ is important in larger vessels such as arterioles. The 
haematocrit (volume concentration of red cells in the blood) is somewhat lower in 
the capillary network than in arteries or veins because red-cell residence times 
are less than those of p1asma.t Furthermore, leakback through relatively thin films 
is important as a mass-transfer mechanism, causing all fluid that is near the 
capillary wall to be brought rather frequently into close proximity to red cells. 

In  what follows, some preliminary insight into the problem of motion in narrow 
capillaries is sought, for the reasons indicated above, by studying an exceedingly 
simplified dynamical model. In  this, loss of fluid through the walls is neglected; 
the whole motion is taken to be symmetrical about the axis of the tube, and the 
geometrical and elastic properties of the red cell and the capillary wall are dras- 
tically approximated. 

In  contrast to these simplifications, considered defensible in a preliminary 
study, certain features of the problem have been regarded as necessary to be 
retained if any insight was to be got at all. First, a pressure distribution with a 
local peak must be elastically demanded as the pellet (a word used henceforth 
in preference to ‘red cell’, in recognition of the high degree of simplification 
inherent in the model) moves along the tube. Secondly, the thickness of that gap 
must be such that viscous forces on the fluid within it balance the gradient of the 
pressure distribution. Thirdly, the pressure forces and the viscous forces, which 
constitute the sole external forces on the pellet, must be in equilibrium. 

t But a further reduction is thought (Pappenheimer & Kinter 1956) to OCCUT in some 
organs, such as the kidney, by ‘ skimming ’ of plasma from near the walls of arterioles into 
the fine capillary network, which is by-passed by the remaining cell-rich fluid. 
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The second condition implies the use of the theory of hydrodynamic lubrica- 
tion, as developed by Reynolds and his successors, to explain the behaviour of 
devices such as thrust bearings, in which a large normal force is transmitted 
between surfaces in rapid relative tangential motion separated by a thin film of 
viscous fluid. In  recent years, certain workers (see, for example, Dowson & 
Higginson 1960) have extended this theory to the case of thrusts so high that the 
resulting elastic deformation of the metal surfaces makes a significant alteration 
to the distribution of film thickness; thus they have included also the first con- 
dition. Other workers, for example Christopherson & Dowson (1959), although 
ignoring elastic effects, have combined the second and third conditions when they 
considered the motion of nearly tightly fitting rigid pellets in rigid tubes filled 
entirely with fluid. To the author’s knowledge, however, the present investigation 
is the first in which all three of the above conditions are satisfied. 

Furthermore, the main developments in ‘ elastohydrodynamic ’ lubrication 
theory (satisfying the first and second conditions) have notably used the fact 
that lubricating oils show a great increase in viscosity as pressure rises up to the 
levels considered. Grubin (1949) inferred an approximation from this which has 
been widely used and, on the whole, has stood up well to subsequent examination 
(Dowson & Higginson 1960); a central region, in which film thickness is essentially 
constant, is on this approximation surrounded by an outer region in which 
pressures are too low to produce significant deformations. 

In  physiological problems, of course, pressure changes are insufficient to change 
fluid viscosity, and such a drastic approximation is then inadequate. Under cer- 
tain conditions, however, an analogous approximation is possible ( 5 5) involving 
a central region where there is only a slow variation in film thickness. 

In  formulating the axisymmetrical problem studied in this paper, and stated 
in detail in § 2, effort has been made to give it generality and potential applica- 
tion to other physiological systems. In  some of these the tube might be much 
more compliant than the pellets (although in the capillaries the reverse is held 
to be the case). The theory, on the simple elastic assumptions here used, indicates 
however that the distributions of pressure and film thickness depend only on the 
sum of the compliances of pellet and tube. 

In  relation to general problems of slow forcing of pellets along distensible tubes 
by pressure differences, an interesting conclusion of the work is that there is a 
‘necking’ of the gap behind the pellet, but not in front (see figure 2). This might 
make the tube look as if it were propelling the pellet by peristaltic contraction, 
even though the forcing is actually carried out entirely by fluid pressure difference. 
Mere appearance, then (in contrast to clear evidence of muscles receiving signals 
to contract), cannot distinguish between hydrodynamically lubricated pressure- 
forcing and peristaltic propu1sion.f- 

To understand the necking physically, we must recognize that pressure gra- 
dient is controlled by the thickness h of the lubricating film in two ways ( 3  6). In  

t In other cases, when the pellet is much more compliant than the tube (as for motion in 
capillaries), the lubricating film is still constricted at  the rear, where suction makes the 
pellet wider than at  its point of unconstrained maximum width, just as Bretherton (1961) 
proved to happen for a bubble moving through a fluid-filled tube. 
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the absence of leakback of fluid relative to the advancing pellet, a negative pres- 
sure gradient proportional to ,u U/h2 (as indicated by dimensional considerations, 
in terms of fluid viscosity ,u and pellet velocity U )  would result. Leakback at a 
rate equal to Q times the tube circumference generates in addition a positive 
pressure gradient proportional to pQ/h3, needed to overcome viscous resistance 
to leakback. The sum of the two contributions can take any positive value (for 
some appropriately small value of h) ,  but possesses a negative minimum (at 
some larger value). 

Behind the point P of maximum pellet diameter (close to which a pressure 
maximum is expected) a positive pressure gradient, increasing with distance 
from P, should appear, as long as film thickness remains small, and hydro- 
dynamically this requires h to decrease slightly. No limit to the positive pressure 
gradient so attainable exists; hence adjustment to the actual level of upstream 
pressure can be made only by an expansion in film thickness so sudden that pres- 
sures actually rise again, a local negative minimum in the pressure gradient 
being reached momentarily in the process. By contrast, ahead of P, no such 
‘necking ’ is anticipated, because the pressure gradient, which the geometry 
requires to be negative, can intensify till it reaches its negative minimum and 
then slowly rise again to zero while the film thickness increases quite gradually. 

These considerations indicate also, what the detailed analysis confirms, that, 
as U decreases, the film thickness h required to produce the necessary pressure 
distributions should ultimately vary as J U ;  it follows that the pressure difference, 
needed to force the pellet against viscous resistances of order ,uU/h, also varies 
ultimately as J U .  In  relatively fast flow conditions, while film thickness is still 
large, leakback may be rather successful in bringing fluid from close to the 
capillary wall rapidly into close proximity to the red-cell surface, and so promoting 
mass transfer. Under slow flow conditions on the other hand, the film may become 
too thin for hydrodynamical lubrication to be maintained at  all. 

The conclusions for the model are set out in terms of the mutual dependence 
of five non-dimensional parameters: a velocity parameter A ,  a clearance para- 
meter B (referring to the clearance, whether positive or negative, of the pellet in 
the tube if both had the shapes which they would take up at  a pressure equal to 
that of the fluid ahead of the pellet), a typical-film-thickness parameter C and 
two alternative non-dimensional forms (D and E )  of the pressure difference 
forcing the pellet. Various graphical representations of how any two of these 
parameters determine the other three are given (figures 6-8). 

The calculations, although on drastically simplified assumptions, are thought 
to have some crude quantitative relevance to the squashed red cell in a capillary, 
even though its geometry is not axisymmetric and its elastic properties are much 
more complicated than have been assumed. Where the tube wall most pinches 
the cell, local pressure maxima must be found, and the lubricating film must so 
adjust itself that the pressure distribution in it, which includes these maxima, 
is balanced by viscous forces; also the viscous resistance associated with this 
film must be balanced by the pressure difference forcing the cell along. These 
considerations seem to indicate that the model may be a first approximation 
with some indicative value. However, if the problem should prove to have physio- 
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logical significance, it may well become desirable to make more refined studies 
later, taking more accurate geometrical or elastic properties, or wall permeability, 
into account.? 

After the work was completed, the author’s attention was drawn to a paper 
by Whitmore (1967), in which the importance of thin films surrounding red cells 
in capillaries is valuably emphasized. Whitmore’s analysis is applicable mainly 
to the not-so-narrow capillaries for which effects of elastic forces on film thickness 
(which he does not attempt to estimate) would be negligible. For these, he sees 
leakback as increasing with tube diameter to a maximum and then decreasing 
again as tube diameter reaches two or three times the red-cell diameter. The 
vessels for which leakback was greatest would be those in which the red-cell 
concentration was a minimum. Furthermore, statistical variations in leakback, 
caused by variations in red-cell geometry, are suggested as a possible cause for 
the ‘ bunching ’ of red cells that is often observed. 

This introduction has suggested application of the analysis only to biological 
systems, but it should finally be noted that engineering application is not ex- 
cluded; for example, to the cleaning of fluid out of long pipelines by passing 
rubber pellets along them. 

2. Mathematical statement of the lubrication problem 
The simplifications made, to render the lubrication problem discussed in 

fi 1 fairly tractable while retaining its essential features, are, in detail, as follows. 
Geometrically, the tube and pellet are supposed axisymmetrical. The maxi- 

mum diameter of the pellet is supposed greater or less than that of the tube by 
only a small fraction, at any rate under a pressure characteristic of, say, the fluid 
into which the pellet moves. In  other words, there is reasonable approximation 
(either on one side or the other) to a good fit. It is, as we shall see, only parts of 
the surface at  a distance from the axis nearly equal to the tube radius whose 
shape significantly influences the lubrication problem. In many cases, these 
limited parts will be characterized geometrically to good enough approximation 
by the curvature K of the pellet’s meridian section at its point of maximum dia- 
meter. We may therefore simplify the problem, while remaining reasonably 
realistic, by taking that meridian section, at  a certain reference pressure p,, 
which will be defined later, to have the equation 

r = To - g K x 2 ,  (1) 

where x is measured axially downstream from the point where the pellet cross- 
section has its maximum radius ro. 

The elastic properties of the tube are also taken as simple as possible without 
being ignored altogether. The inner diameter at any one point is taken to increase 
linearly with the Iocal pressure, but not to depend on the pressure at  any other 
point. Implicit in this is the assumption that the tube is not under longitudinal 
tension (which would add a term proportional to the curvature of the meridian 

t Note added in proof. Work on all these lines by J. M. Fitz-Gerald has now reached 
an advanced stage. 
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section). Furthermore, the internal pressure itself is assumed not to generate 
axial tensions; this assumption is at  least reasonable for tube materials with 
Poisson's ratio close to +, like those occurring in most biological systems. It is 
convenient to write the linear relation between local internal radius of tube wall 
r and local pressure p as 

= Yo+a(P-Po) (2) 

so that the reference pressure po  (which may be positive or negative relative to 
atmospheric pressure) is defined by (1)  and ( 2 )  as that for which elastic deforma- 
tion causes the pellet to fit exactly within the tube. This means that pressure 
distributions with p > p o  everywhere correspond to pellets whose maximum 
diameter is less than the minimum internal diameter of the tube, but distribu- 
tions including regions where p < po correspond to tubes whose diameter is in 
places less than the pellet's maximum diameter. 

Cases where the deformability of the pellets may be ignored could, without 
doubt, be of some interest. A more general case, in which elastic properties of the 
pellet are not completely ignored, but are highly simplified, is one in which differ- 
ence in the local pressure from the reference pressure po  produces a proportionate 
local constriction of the local pellet radius below the value (1) : 

(Where pellets of complex internal structure are involved, such a dependence is 
thought to be the only reasonable relatively simple assumption that can be made.) 
We shall see that the radial compliances a and P, of tube and pellet respectively, 
are not separately significant, but appear only in the linear combination a + p. 

In  fact, the thickness h of the lubricating film between the pellet and the inner 
tube wall must be given as the difference between the two radii (2) and (3),  
namely as 

Since this thickness must be positive, we see that the point x = 0 of maximum 
pellet diameter p-po  must be positive, although other regions may exist (as 
has already been noted) where p < po.  

When a pellet is being forced along the tube by fluid pressure difference at  a 
velocity U ,  we may conveniently analyse the dynamics of the lubricating film 
in a frame of reference which itself moves with the pellet at  velocity U.  There is 
then a steady flow in which the axial velocity takes the value zero at  the pellet 
and the value ( -  U )  at the tube wall. To obtain axial velocities relative to the 
tube, it would of course merely be necessary to add U.  

The film will now be analysed on the usual assumptions of hydrodynamic 
lubrication theory. In  particular, the Reynolds number based on film thickness 
is assumed small enough so that the inertial terms can be neglected in the equa- 
tions of motion. The other approximations are those of boundary-layer theory; 
in particular, the pressure p is taken to depend on the axial co-ordinate x alone 
and not to vary across the layer, and the thickness h is taken to be much smaller 
than the reference radius ro of pellet or tube in all parts of the flow where the pres- 
Sure p is varying significantly owing to hydrodynamic lubrication effects. 

(4) h = (& + P )  ("J -Po)  f & K X 2 .  
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As usual in theories of boundary-layer type, we use a special co-ordinate y to 
denote distance across the layer; in this case, radial distance measured from 
y = 0 at  the surface of the pellet (so that y is in fact the difference between r 
and the right-hand side of (3)). The axial momentum equation (boundary-layer 
equation without inertial terms) takes the form 

where the right-hand side is the usual boundary-layer approximation to the 
viscous terms, so that, for example, a term like (,m/r) has been neglected 
because typical values of h, where the pressure is varying significantly, are small 
compared with typical values of r .  

Equation (5) must be solved subject to boundary conditions 

u = 0 (y = O ) ,  u = - u (y = h), (6) 

as has already been discussed, and to an equation of continuity 

where Q is independent of x and 2nr, Q represents a rate of leakback of fluid past 
the pellet. To obtain (7) ,  the equation of continuity in the approximate form 

au/ax+ avpy = 0, (8) 

which neglects such relatively smaller terms as v / r ,  must be integrated from y = 0 
to y = h, so as to eliminate v. 

The distribution of u across the layer given by (5) must be quadratic, since 
a2u/ay2 is independent of y, and equations (6) and ( 7 )  determine it uniquely as 

Substitution in ( 5 )  then gives 

a second relation between the pressure p and the film thickness h (both being 
functions of x), which together with the relation (4) constitutes a differential 
equation for either quantity. The increasing inaccuracy of the assumptions 
leading to equation (10) as h becomes large (far from the point x = 0 of maximum 
pellet diameter) is evidently unimportant because the pressure gradient soon 
becomes negligibly small in this region compared with its values where the film 
is thin. 

Thus, the differential equation specified by (4) and (10) has solutions with 
definite limits p(00) and p (  - 00) as x becomes large. Although mathematically 
these are limits as x + 00 or x + - 00, they represent in practice values of the 
pressure such as would be found immediately ahead of and behind the region 
where the lubricating film is thin. 
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Specifying the downstream pressure p(co) would essentially determine the 
positive or negative clearance (cz+p) [~(oo) -pol of the pellet in the tube at  that 
downstream pressure. Also it would specify uniquely a solution of equation (lo), 
and so determine the pressure difference p( - 00) -p(oo) required to push the 
pellet against viscous resistance at  the assumed velocity U.  However, the answer 
obtained would depend still on one unknown constant Q,  appearing in (7),  (9) 
and ( lo) ,  whose value we wish to calculate in its own right as well as a means 
of evaluating the resistance. 

Fortunately, one relationship exists which has still not been used and is suit- 
able for determining the unknown constant &. This states that the axial forces 
on the pellet are in equilibrium, so permitting it to proceed along the tube at  
constant velocity U .  The skin-friction 7 (viscous stress resisting the motion of 
the pellet) is given by (9) as 

2pu ~ P Q  
- h +-7 h2 

t/=O 

while the total resistance, integrated over the area of the pellet where h is small 
compared with the reference radius ro, is 

27rr0sm --oo rdx .  

Balancing this resistance force on the pellet is the axial force due to the pressure 
difference p (  - co) -p(co) acting over a cross-sectional area that may be approxi- 
mated as rr; .  Hence, to this approximation, 

7rr;[p( - co) -p(co)] = 2nr, 

We shall see that the range of solutions of the differential equation (10) that 
are physically relevant is considerably restricted by (13). This is because, for 
both sides to have the same (positive) sign, the solution must be such that, in 
some average sense, dpldx < 0 but 7 > 0. Equations (10) and (1 1) show this to 
mean that the layer must be dominated by a region with 

2QlU < h < 3&/U, (14) 

even though far larger values of h must be present for the larger 1x1. It is this 
condition that is satisfied for only a rather restricted band of solutions of the 
differential equation. 

3. Reduction to non-dimensional form 
In  scaling the variables so as to reduce the problem defined in $ 2  to  non- 

dimensional form, we take into account the expectation just inferred, that 
2&/U will be a good measure of typical film thickness. This leads us to non- 
dimensional forms 
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where the pressure is scaled in terms of that required to increase the film thick- 
ness (4) by one standard amount 2Q/O, and axial distance in terms of that re- 
quired to increase the film thickness by half that standard amount. 

Equations (10) and (4) then become 

dPldX = L(H-3- H-2), H = P + + X 2 ,  (16) 

where the non-dimensional constant L, whose value, as we shall see, determines 
the character of the solution, is given as 

The subsidiary condition (13) can then be regarded as determining the non- 
dimensional quantity C = 2Q/Uro, (18) 

which can be interpreted as a ratio of a typical film thickness 2QlU to the refer- 
ence radius r,,. The assumptions of § 2 show that we are interested in solutions with 
C small compared with 1. A more precise interpretation of C derives from the 
fact that 277r,Q is the rate of leakback of fluid past the pellets. Comparing this 
with the flux U of fluid that the pellets’ motion would produce in the absence 
of leakback, we see that Cis the fractional reduction in fluid flow due to leakback, 
or, in other words, the fractional reduction in mean fluid velocity below the pellet 
velocity U.  In  terms of C, equation (13) becomes 

(19) P( - co) - P(co) = LC (H-2 - y - 1 )  d X .  s_s, 
The non-dimensional form of the equations can in principle be solved uniquely 

if L is given (implying that U and Q are prescribed, but not at  this stage ro), 
together with say P(co), which specifies the positive or negative clearance, which 
the pellet would have in the tube a t  the downstream value of the pressure, as a 
fraction of 2QlU. The solution then fixes P( - co) and so the pressure difference 
needed to push the pellet at velocity U ,  while equation (19) fixes C, that is, the 
ratio between the alternative length-scales 2Q/ U and ro. 

The interesting phenomenon, that only a narrow band of solutions of the non- 
dimensional differential equation (1 6) fulfils the necessary condition that C 
be small and positive (or in some cases even the condition that the value of C 
determined from (19) be positive at all), is well brought out by analysis of solutions 
both in the limit as L -+ 0 and in the limit as L + 00, and numerical solution con- 
firms it. The results of analysis for small L and large L and of computer solutions 
for a range of intermediate L are given in the sections that follow. 

4. Analysis for small L 
For small values of the parameter L, the differential equation (16) can be 

solved by a simple perturbation analysis. However, the interesting question, 
whether any band of solutions exists such that both the left-hand side of equation 
(19) and the integral on the right-hand side are positive, as is necessary for a 
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physically meaningful solution, cannot be answered on a first-order perturbation 
analysis and requires analysis to third order. 

If we write, for convenience, P(Go) = +a2, then the zero-order solution of (16) 
as L-t 0 is P = constant = &a2. If this solution is substituted on the right-hand 
side of the differential equation, the first-order solution follows by integration. 
To this order, we obtain 

27lL 
P(-GO)-P(GO) = -(aZ-$), a5 

which is positive provided that 

but we also obtain 
P(GO) = +a2 > 2, 

(H-Z - q j - 1 )  ax = .- (3 - 

P(GO) < I. 

477 
3a3 I";, 3 

which is only positive if 

To this order, then, there is no band of solutions for which both quantities are 
positive, but, because the bands where each is positive are directly contiguous, 
it  remains possible that when analysed to higher order in L they may overlap. 

This is found to be the case, in fact, by an analysis to third order, which al- 
though completely straightforward is too lengthy to be reproduced here. The 
condition (21) that P( - GO) - P(Go) be positive becomes replaced by 

P(w) > 0.75-0.1313L2, (24) 

P(w) < 0.75 - 0*1169L2. (25) 

while the integral (22) is positive provided that 

For these small values of L, therefore, there is an exceedingly narrow band of 
solutions, namely those satisfying (24) and (25), for which the peremptory re- 
quirement that equation (19) yield a positive value of C is satisfied. Evidently 
the value of C so obtained varies from 0 to + GO as we go from the lower limit (24) 
to the upper limit (25), and, since we are in fact interested only in smull positive 
values of C, it is solutions close to the lower limit (24) which alone can concern 

For these small positive values of C, it is an adequate approximation to re- 
place the integral on the right-hand side of equation (19) by its value at the lower 
limit of the permissible band of solutions. This procedure, which will also be found 
not too inaccurate for large L, is really a continuation of the process of approx- 
imating for small C, that is, small ratio of film thickness to tube radius, which 
was involved in the derivation of the equations in $2.  The zero-order approx- 
imation for small C to equation (19) selects the solution with P( -GO) = P(Go). 
The first-order approximation for small C ,  which we adopt, uses the zero-order 
solution to evaluate the integral in (19) as what we shall call 

us. 

, f (L) = value of (H-2 - $H-l) dX for the solution with P( -GO) = P(Go), 

.and takes P( - 00) - P(GO) = LCf(L). 
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The actual third-order analysis for small L gives, in fact, 

f (L )  N 0.0657L2 as L+O. (28)  

We shall also define, for all L, b ( L )  as the value of P(co) for the solution specified 
in (26); equation (24) implies that 

b(L)  - 0.75 N - 0*1313L2 as L+O. (29) 

This shows how the clearance between pellet and tube at  a pressure characteristic 
of that ahead of the pellet, which b ( L )  gives as a fraction of the typical film thick- 
ness 2Q/ U ,  is positive for all the smaller values of L, although we shall see later 
that it takes negative values when L > 3-2. The curious reader might suppose 
that the coefficients appearing in (28) and (29) are in the exact ratio 2, but this is 
notso;theformeris2f. 3*. 7nwhereasthelatteris therationalnumber 319/2430. 

Numerical evaluation off(L) and b(L) will, in fact, show us that this perturba- 
tion analysis for small L leading to (28)  and (29 )  gives reasonable results for 
L < 1. 

5. Analysis for large L 
Complementary to the perturbation analysis for small L just presented is an 

analysis of the differential equation (16)  in the limit as L -+ co. Analysis for large 
L is important especially because the cases when the clearance between pellet 
and tube would be negative if both were at the downstream value of the pressure 
are found t o  fall into this range. Even though particular numerical solutions of 
(16) have been computed, an analysis for large L is useful for fitting them into a 
general scheme, and for giving the kind of physical insight into their form that 
was offered in a preliminary way in § 1. Conversely, numerical solutions for large 
L (such as L = 8) are found in $6  to give quite a good check on the correctness of 
the rather complex analysis of this section. 

Evidently the study of equation (16)  for large L is a singular-perturbation 
problem. It is, indeed, one to bring joy to the hearts of devotees of the method of 
matched asymptotic expansions, since to obtain even a first approximate 
solution for large L involves matching forms of asymptotic solution that are 
different in each of six separate layers. The fact that the coefficient of L on the 
right-hand side of the equation possesses a stationary value when H = .$ is in 
part responsible for the rather unusual complexity of the multi-layer asymptotic 
solution. 

The six layers comprise, first, three extended regions where the approximate 
form of the solution is very simple indeed; we shall call them a left-hand region 
(extending to X = -co), a central region (including X = 0) and a right-hand 
region (extending to X = + 00). Of these, the first two are separated by a narrow 
region of simple boundary-layer type; but the central and right-hand regions are 
separated by a more extended interval which is of double-boundary-layer type, 
in that it needs asymptotic analysis as a combination of two separate matched 
layers. All the boundary layers are situated in regions where 1x1 is of order L. 
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The two outermost regions are constant-pressure regions in which the right- 
hand side of the differential equation (16) is so small that to a high order of 
approximation 

in the left-hand region and 

in the right-hand region. The central region is one of slowly varying film thickness, 
as mentioned already in § 1. In  this region, in fact, H varies so slowly with X 
that to a close approximation the left-hand side of the differential equation (16 ) ,  
namely dPldX,  can be replaced by - X ,  giving 

(32) 

In  this region, equation (32) specifies H as a smooth function of X I L ,  which 
near X = 0 behaves closely like 1 + X / L .  Substitution to obtain a more accurate 
value for dP/dX shows the error in equation (32) for H to be of order L-2. 

The matching between the left-hand solution (30) and the central solution (32) 
takes place in a narrow region where X changes so little that to a first approxima- 
tion the difference X between dH/dX and dPldX can be taken constant within 
the region. We are interested in large negative values of P( - co), as we shall see, 
and for these there is only a short transition between values of X so large and 
negative that H-2 on the right-hand side of the differential equation (16) is 
completely negligible and values of X which make H of order 1 as in (32). 

If this transition layer is centred on a point X = - Y then 4x2 can be ap- 
proximated as - 4 Y 2  - Y X  within the layer, and therefore dP/dX replaced by 
dH/dX+ Y .  Where this layer merges with the left-hand region, governed by 

(30) 

P = P(m) (31) 

P = P(-a3) 

XIL  = H-2 - H-3. 

H = P(-CO)+&X', P ( - o o ) - & Y 2 - Y X .  (30), we have 
(33) 

At a general point of the layer ( 1 6 )  becomes 

dH/dX + Y = L(H-3 - (34) 

The general solution of (34) takes the form 

+constant, 
dH 

Y + L ( P 2  - H-3) (35) 

and the solution satisfying the condition (33) at the left-hand edge of the layer 
is 

1 1 --;]dH x = -[P(-m)-*Y2-H-j+ Y /: [Y+L(H-2-H-3)  

Since Y itself, as we shall see at the end of this section, is of order L, the thickness 
of layer within which (36) holds is of order 1/L. 

This layer terminates on the right at  the point H = H ,  where the denominator 
YH3+ L ( H -  1) in (36) vanishes. Evidently this is the transition to the central 
region where (32) holds: at  the boundary layer, of course, the X which appears in 
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(32) is replaced by - Y .  The integral in (36) becomes logarithmically infinite as 
H approaches H,, so that H - H, is tending exponentially to zero as Y X  increases. 
This confirms that the boundary layer between the left-hand and central regions 
has thickness of order 1 / L  and merges with exponential rapidity into the central 
region. 

The adequacy of these approximations depends on an appropriate choice o 
Y ,  as a typical value of - X in the midst of the boundary layer. It is sufficient to 
take it as the value where H takes the intermediate value 1,  and so obtain Y 
by solving the equation 

L ( H -  1)dH 4 y2 + P( - 00) - 1 = _ _ ~ ~  
Y H ~ + L ( H - ~ )  

- c (-1)"-1-- ( 2 n - 2 ) ! n !  L n 

s 
W 

(3n -1 ) !  (k) * 

- 
n= 1 

(37) 

Before leaving the left-hand boundary layer we may note that a solution uni- 
formly valid between it and the left-hand region can be obtained from (36) by 
replacing X Y + 8 Y 2  by - $ X 2  again; this solution is 

O0 L ( H -  1)dH 
3 + L ( H  -7) ' 

8x2 = P ( - a ) - H -  (38) 

which in the limit as the integral tends to zero becomes identical with equation 

An interesting feature of the solutions in the left-hand and central regions and 
intervening boundary layer is that within very wide limits any large negative 
value may be taken for P( - a), and in the left-hand region this determines 
a solution (30), but, when the solution is continued far enough to the right, we 
reach a central region where the solution (32) has ceased to show any dependence 
on P( - 00). It is merely the position X = - Y where the transition occurs, and to 
a minor extent the speed of the transition, that depend on P( - a). Sooner or 
later, all these solutions converge into the one curve given by (32), so we may say 
that, if we are solving from left to right, the differential equation is an exceedingly 
stable one. 

This high degree of stability, at  any rate in the region around H = 1, can be 
perceived very clearly if we linearize the differential equation (16) about H = 1 

(30). 

dH/dX+ L ( H -  1 )  = X .  so that it becomes 
(39) 

Evidently the different solutions of (39) differ by constant multiples of 
exp ( - L X ) ,  and all converge on to each other as X increases. 

There is a more complicated kind of boundary-layer behaviour between the 
central and right-hand regions. Whereas on the left the central solution (32) 
could, in principle, be contiiiued up to any negative value of X I L ,  however large, 
and the particular value at which it breaks off depends on which particular 
left-hand solution P = P( - co) it must match with, the situation on the right is 
quite different. We are not dealing now with a bundle of solutions, because they 
have all run together into one. However, that one solution (32) cannot be con- 
tinued beyond X I L  = +T because &. is the maximum value that the right-hand 
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side of equation (32) can take. In  the absence of any other criterion to set a limit 
on the right to the validity of (32)) this maximum is found to dominate the transi- 
tion. I ts  presence, furthermore, seriously complicates the problem of approxi- 
mating to equation (16) around XIL = gT, because changes in L(H-2 - H-3) 
around the maximum cannot easily be so large as to dominate changes in the 
( - X )  component of dP/dX.  

Accordingly, an adequate approximation to equation (16) near X / L  = & 
invoIves making a quadratic approximation to H-3 around its maximum 

(40) H = 2) namely H-2-H-3 4 1 6  . 2 7  s1(H-B2,  

lmt not simplifying in any other way. The equation becomes 

We need the solution of (41) which fits, on the left-hand side of X / L  = &, into 
ecpation (32) as modified by the approximation (40) to the form 

That solution of the Riccati equation (41) is obtained by standard methods as 

where ~ ( z )  is the logarithmic derivative of the Airy function; thus 

x ( z )  = Ai’(z)/Ai(z) N - Jz as x+  +co. (44) 

This solution (43) is reasonable until X approaches near 

4L 

where z1 = 2.338 is the smallest positive root of Ai( - x )  = 0. As z+ - zl, 

1 
giving H - # N ___ Slll6L x ( 4  x+xl’ x , - X ’  

(45) 

A second boundary layer is now needed to fit the solution (431, which as X 
approaches near X l  takes the simple form (46), into the still simpler right-hand 
solution (3 1). 

Fortunately, this second right-hand boundary-layer solution can be worked 
out sufficiently accurately by the same approximation that led to the left-hand 
boundary-layer solution (36). We approximate &X2, not now near X = - Y but 
near X = X,, as X,X-&X; .  Where the layer merges with the right-hand 
solution (3 1) ) we have 

H = P(a) + $x2 N P(a) - 4.x: + X i X .  (47) 

At a general point of the layer 

9 

dH/dX = X ,  + L(H-3 - H-Z), (48) 
Fluid Mech. 34 
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and the solution of (48 )  which agrees with (47) as X - X ,  increases is 

X = - [ - P ( m ) + t X : + H ] + I m [ L - -  H XI  X1+L(H-3-H-2) ] d H  
X l  1 

= - [ - P ( m ) + k X : + H -  1 

X l  
(49)  

Since equation (49) represents a bundle of solutions for different values of 
P(.o), it seems likely that the process of matching to the behaviour (46)  for X 
just less than X ,  will fix the actualvalue of P(m) uniquely. This is found to be the 
case if near H = $ we write the integral on the right-hand side of (49) as an in- 
tegral from $ to 00, which we call G, minus a second integral from + to H ,  and in the 
latter make the approximation (40).  This gives 

When the last quantity in square brackets in (50) takes values large compared 
with 1,  the inverse tangent tends to the constant value with a difference 
proportional to the reciprocal of its argument. This matches with the behaviour 
(46)  precisely provided that the pole X = X ,  is equal to the valueof (50) with the 
inverse tangent set equal to in; in other words, that 

This equation has been reached by matching solutions in a region where H - $ 
is relatively small but XI - X is also small; fortunately these conditions are com- 
patible for large enough L, as equation (46 )  shows. Hence, finally, for large 
enough L, 

where X ,  is given by (45) and 

P(co) + 

L ( H -  1)dH 
X1H3-L(H-  1 ) '  (53)  

We have inferred that the value of P(m) is, to a good approximation for large 
L, independent of the value chosen for P( - 00). Actually, since only small values 
of C are of interest, equation (27)  forces P( - 00) to be not greatly different from 
P(m). But, since the value of P(m) depends so little on the value of P( - a), it is 
adequatle, just as with small L ($4), to concentrate on that solution for which 
P( - co) = P(m). The value of P(m) for that particular solution was called b(L)  
in $4, and equation (52) tells us that for large L 
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There is a somewhat greater, but not by any means critical, dependence of the 
integral on the right-hand side of (19) upon the value of P( -a); for small enough 
C it can again be approximated sufficiently accurately by f(L), defined in (26). 
Essentially this is because the contribution to the integral from the central region 
outweighs all the contributions from the other five layers. The fact that the in- 
tegrand vanishes at  H = $ reduces the significance of the relatively thick double 
boundary layer on the right-hand side, whose influence on the value of b(L), by 
contrast, is as we shall see quite large even for values of L of order 10. The expo- 
nential increase in H in the thinner left-hand boundary layer makes its contribu- 
tion still smaller. 

The main contribution to the integral, then, that from the central region where 
(32) holds, can be written 

where the range H, < H < $ is the range of validity of the central solution and 
d X  has been substituted from equation (32). The coefficient of L in (55) shows 
some dependence on the value of P( - 00) through equation (37) defining Y ,  
which in turn specifies H, as the solution of 

H - 3 -  0 H t 2  = Y/L. (56) 

In  the particular case P( -m) = P(co) used in (26) to define f (L) ,  we have 
asymptotically for very large L, according to (45) and (51), XI N 4L127 and 

- -0.0110L2, (57) P(-00) = P(co) N -_ - 
8L2 
729 

so that in turn, by (37), Y N 4L/27, from which equation (56) gives H,, = 0.894 
and finally ( 5 5 )  gives 

If we used this asymptotic equation (58) in combination with equation (27) in 
the case C = 0.05, say, we should get, as an approximation to P( - co) closer than 
(57), the result P( - co) N - 0-0063L2, and so should obtain Y N 0-112L and 
H, = 0.914, whence theintegral (55) would come to 0.077L. Thisvalue would then 
lower P( - co) a little, and so on; when the process has converged, the true value 
of the integral (55) comes to 0-079L. We can say, therefore, that for C = 0.05 
the use of f(L) as defined by (26) to determine through (27) the resistance to 
the pellet’s motion overestimates the true resistance by as much as 19 yo when L 
is very large. On the other hand, similar analysis of the results of $4 indicates 
that for small L the overestimate is considerably less substantial; furthermore, 
we shall find in $ 7 that practical cases with C as big as 0.05 to which the theory 
applies correspond to relatively small values of L (not exceeding 5). 

The general conclusion of these analyses is that errors are not expected to be too 
great if a single solution of equation (16) is obtained for each L, namely that for 
P( - 00) = P(co), and if the difference P( - 00) - P(co) is then determined from 
equation (27). This is a useful simplication, which is used throughout the numeri- 
cal work described in $ 6, and whose validity will be supported by further studies 
in $ 7 .  

f(L) N 0.094L. (58) 

9-2 
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6. Numerical analysis for particular values of L 

The rather complicated nature of the perturbation analyses of $64 and 5 for 
small L and large L respectively made it desirable to obtain solutions of (16) 
numerically for a representative set of values of L. For reasons just described, 
however, only solutions with P( - co) = P(co) were calculated. 

To make the equation suitable for numerical integration on a computer using 
the Rung-Kutta method, a finite range of integration was obtained by the trans- 
formation X = (42)tanB. The interval from 0 = -&- to B = +n- was divided 
into 44L equal intervals, this number being chosen in the light of the analyses 
for small and large L to allow for proper following of the regions where the most 
rapid variation of P with X was expected; for example, for large L, the left-hand 
boundary layer. Integration was performed in the ‘stable’ direction (from left 
to right, see $5) and iteration used to find the solution with P( -a) = P(o0). 
The grid points were dense enough for the integralf(L) defined by (26) to be 
determined by application of the trapezium rule; for this purpose the limit of the 
transformed integrand as 0 + 

Solutions for L = 0 . 5 , 1 , 2 , 3 , 4 , 6 , 8  and 10 were obtained by these means. Some 
aspects of them are set out graphically in figures 1 to 5. First, the quantity b(L) 
representing the value of P(co), which signifies the clearance of the pellet in the 
tube at  the downstream value of the pressure as a fraction of the typical film 
thickness 2Q/U, is plotted as a function of L in figure 1. This plot gives a useful 
clue to the significance of different values of the parameter L, whose own defi- 
nition (17) is rather complicated. We see that for L < 3-2 the clearance is positive, 
with b(L) falling from the value 0.75 for L = 0 to zero at  L = 3-2. (In these cases, 
elastic distortion of pellet and tube is still necessary, however, where the film 
thickness adds to the effective thickness of the pellet.) On the other hand, the 
cases L > 3.2 are those with negative clearance, for which film thickness produces 
distortion additional to what the pellet geometry would already demand. 

In  figure 1, the dotted curve gives the result (29) of the analysis for small L, 
which is seen to be good for L < 1. The broken line gives the result (54) of the 
analysis for large L. The exact values (plain line) follow this broken line closely 
for L 2 3, but remain slightly above it; however, the discrepancy is decreasing 
fast as a proportion of the absolute value of b(L). 

Figure 2 shows a typical non-dimensional pressure distribution P ( X )  for a 
fairly large value of L, namely 8. The upper curve is P ( X )  itself, while the lower 
curve is the function ( -  i X 2 ) ,  so that the difference between the curves is the 
non-dimensional film thickness H = P + +X2.  If  the pellet were rigid and the tube 
elastic, the upper curve would represent the tube shape (on a suitable scale) and 
the lower one the fixed pellet shape. If the pellet is elastic, however, it will 
participate in the distortion, but we can still say that the pressure varies as given 
by the upper curve and the film thickness as given by the distance between the 
curves. 

Even for an only moderately large value L = 8, the layer structure predicted 
in $ 5  is clearly visible, as markings on the figure indicate. The film thickness 
exhibits only very gradual growth with X in the central region. The boundary 

&r had to be calculated analytically. 
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layer separating this from the left-hand region of approximately constant pres- 
sure is thin, but there is a more extensive, and indeed double, boundary layer 
separating the central region from the right-hand region. 
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FIGURE 2. The non-dimensional pressure distribution P ( X )  for L = 8, and the function 
( - &Xz) ,  plotted as functions of the non-dimensional axial co-ordinate X .  The difference 
between the curves is the non-dimensional film thickness H .  

A good check on the correctness of the left-hand boundary-layer analysis is 
given by equation (37) for Y ,  the value of ( - X )  where H = 1 (so that P takes its 
minimum value). The exact value is Y = 2.73, whereas equation (37) gives 
2.83; there is similarly close agreement for all L 3 3. 

The right-hand boundary analysis is checked in figure 3, again for the case 
L = 8, by plotting (16L/81)% ( H  - $) against (16L/81)* (&L - X) and compar- 
ing the result with the approximate boundary-layer solution (44), that is, the 
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FIGURE 3. Comparison of the solution computed for L = 8 with the approximate 
boundary-layer solution (44). 

1.5 - 

1.0 - 

h 

Y 
\ 

0.5 - 

I I I 
0 5 10 15 

L 

FIGURE 4. Plots as a function of the parameter L the resistance integral f(L), defined in 
equation (26). - -. . -, theory for small L (3 4) ; - - -, theory for large L (0 5 )  ; - , exact 
values ($6). 
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logarithmic derivative of the Airy function. The agreement is again seen to be 
reasonably good. 

Figure 4 shows the variation with L in the integral f (L)  defined in (26). The 
dotted line, representing the behaviour (28) for small L, is close to the exact curve 
for L < 1, while for L 2 3 the departure from the broken line, representing the 
simple behaviour (58) for large L, does not exceed 10 yo. (In fact, f (L) /L  rises to 
a maximum of 0-104 at L = 9 and thereafter falls to its asymptotic value 0.094.) 
Thus, although the complicated type of approximate form (54) was needed to 
get relatively close to the values actually found for b(L),  and the simple asymp- 
totic form (57) would have been quite inadequate, the departures of f (L )  from 
its simple asymptotic form (58) show in practice (for reasons mentioned in 5 5) 
a much greater tendency to cancel one another out. 

The fairly good agreement between the approximate theory for large L and 
computations for all values of L in the range ( L  > 3.2) where the pellet would 
have negative clearance at  the downstream value of the pressure tempts one to 
seek an expression of the asymptotic theory in simple physical terms which will 
make the conclusions more intelligible. This can be attempted on the following 
lines. 

In  the absence of leakback the flow relative to the pellet is due to backward 
traction by the tube wall moving at  velocity U .  This generates (if leakback is 
prevented) a negative pressure gradient (that is, a pressure falling in the direc- 
tion in which the pellet is moving). Dimensional considerations cause it to vary 
as ,uU/h2 where h is the film thickness (note that in flow a t  low Reynolds number 
pressure gradients are balanced directly by viscous forces alone, without the 
intervention of any inertial terms involving the density p). The addition of leak- 
back a t  a rate Q per unit circumferential distance adds a positive pressure gra- 
dient (one which can force a net flow Q backwards against viscous resistance) 
which similar dimensional considerations cause to vary as ,uQ/h3. The sum of these 
negative and positive pressure gradients varying as h-2 and h-3 must have a 
negative minimum, but be able (as h becomes smaller) to take any positive value. 

Behind the position of maximum cross-section the geometry calls for a region 
of positive pressure gradient. There is no natural limit, as we have just seen, to 
the value this can reach, and so, as long as the gradient of film thickness 
remains only gradual, the pressure gradient continues to rise. It can separate 
only by an increase of film thickness to the rear of the pellet so rapid that the 
pressure itself starts to increase, while the pressure gradient rapidly reaches 
its negative minimum and returns to zero, in response to the rapid increase 
in h. This gives the necking at  the rear, which figure 2 shows so clearly, and 
which might almost be confused with peristaltic propulsion of the pellet. 

By contrast, at the front there is a natural limit to the region of adherence of 
kube wall and pellet, because the pressure gradient, negative in this region, 
cannot decrease beyond its permissible minimum. It can be expected, rather, to 
approach this minimum gradually, and remain near it in a relatively extended 
region, which does not involve any abrupt rise in film thickness. The film thick- 
ness increases only slowly in fact; but ultimately this permits the pressure gra- 
dient to fall to negligibly small values. The necking at the rear is not mirrored, 
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then, by any similar phenomenon in front, where there is rather a very smooth 
and gradual variation of tube radius. 

It is interesting to note that the general impression given by the above physical 
description is still found to be valid for quite a small value of L, namely 1, 
corresponding to a substantial positive clearance of the pellet within the tube at 
the downstream value of the pressure. Figure 5 plots P and ( - $ X 2 )  for L = 1, 
just as figure 2 did for L = 8. The necking at  the rear and smooth variation in 
front are not so pronounced but are still clearly visible. 

1 ,  P 

FIGURE 5. The non-dimensional pressure distribution P ( X )  for L = 1, and the function 
( -  i X z ) ,  plotted as functions of the non-dimensional axial oo-ordinate X .  The difference 
between the curves is the non-dimensional film thickness H .  

It must be recognized, of course, that figures 2 and 5 show pressure distribu- 
tions solely in the limiting case when the difference, pressure behind minus 
pressure ahead of pellet, is negligibly small compared with the variations of 
pressure in between. In  many practical cases to which the theory could be applied 
(see Q 7) the difference would indeed be so small as to be undetectable on the scale 
of such figures. In  the remaining cases, however, a more realistic pressure distri- 
bution would be one in which the point of ‘necking ’ was moved slightly forwards, 
and the level of pressure from that point backwards was very slightly raised 
above the values shown in the present diagrams. 

7. The principal parameters of the motion and their interdependence 
The results of the analysis of 303-6 cannot be used directly to infer character- 

istics of the motion produced when tube and pellet have given geometry, elastic 
properties and relative velocity, and the fluid has given viscosity. This is because 
the necessary non-dimensionalizing of the equations had the effect that all 
quantities were deduced as functions of the non-dimensional parameter L, 
defined by (17). On the other hand, the value of this parameter can by no means 
be regarded as given, since it depends rather sensitively on the value of the typi- 
cal film thickness 2Q/U,  which is one of the quantities which we particularly wish 
t o  determine. 

It follows that, after computing the dependence of various physical para- 
meters on L, we must proceed by elimination of L to deduce the dependence of 
those parameters on one another. In  this section, we introduce several non- 
dimensional parameters relevant to the motion and carry out this process of 
elimination of L to determine their interdependence. These are new parameters, 
additional to the parameter C defined in equation (18) as the ratio of typical film 
thickness to tube radius. 
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First we introduce a parameter 

A = PWa+P)/3(Kro)*, (59) 

which measures pellet velocity on a scale depending only on the fluid viscosity 
and on the geometry and elastic properties of tube and pellet, and a clearance 
parameter 

which is the ratio of the clearance (positive or negative), that the pellet would have 
in the tube at  the downstream value of the pressure, to the tube radius. Next, it  
is necessary to relate the value of a velocity parameter such as (59) to some non- 
dimensional form of the pressure difference. Two alternative forms will be used; 
the first is 

which we shall see relates it to the pressure difference in a stretch of purely 
fluid-filled tube with mean velocity and length comparable to those of the pellet; 
the second is 

which measures it on the same scale as (60), and is the (possibly very small) 
difference between the clearances that the pellet would have in the tube at  the 
upstream and downstream pressures, divided by the reference radius r,,. 

In  order that the approximate equations derived in $ 2  shall be reasonably 
accurate, we shall confine ourselves to solutions for which the parameters B 
and C are of order 10-1 or less. In  order that the approximate replacement of 
condition (19) by equation (27) be reasonably accurate, we need also that E be at  
least an order of magnitude smaller; that is, of order or less. By excluding 
solutions for which the resistance to the pellet’s motion is so great that the pres- 
sure difference required expands the gap between the tube and pellet by signifi- 
cantly more than 1 %, we are probably not excluding from consideration situa- 
tions of great practical interest. 

In  terms of the parameters L and C which were taken as fundamental in 
$53-6, the new parameters A ,  B,  D and E are specified, according to equations 
(15), (17), (18) and (27), together with the definition of b(L) as the value of P(m) 
for the solution considered, as 

(60) B = (a +P)  -PoIh*, 

(61) D = [P( - m) - P ( ~ ) 1 ~ 0 ( ~ ~ 0 ) 4 / / a  

(62) E = (a +P)  [(P( - 0) -P(a)I/ro, 

A = $LCg, B = b(L) C, D = 6C-+f(L), E = LC2f(L). (63) 

From these relationships, with the determinations of b(L) andf(L) in $34-6, it 
is possible to eliminate L and express any three of the physically significant 
parameters A ,  B, C, D and E in terms of the other two. 

For example, figure 6 shows curves of constant A and curves of constant C 
on a plot in which the abscissa is B on a linear scale and the ordinate is E on a 
logarithmic scale. This was obtained by taking in pairs particular values of A 
and C (and not only those actually shown on figure 6), deducing Lfrom the first of 
equations (63) and so inferring the values of B and E .  The conditions that B and 
C should be of order 10-1 or less and E of order 10-2 or less were applied in 
selecting the curves actually plotted. Evidently 10-2.5 is about the largest value 
of the velocity parameter A for which these conditions are satisfied. 
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The right-hand half (B  > 0 )  of the diagram corresponds to pellets with positive 
clearance at  the downstream value of the pressure. Film thicknesses are corre- 
spondingly high and, for given velocity parameter A ,  predicted resistances are, 
relatively speaking, very low indeed. 
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-0.1 -0.05 0 0.05 0.1 0.15 

B 

FIGURE 6. Curves of constant velocity parameter A and film-thickness parameter C on a 
plot in which the abscissa is the clearance parameter B and the ordinate is the resistance 
parameter E. 

The more interesting left-hand half (B  < 0)  corresponds to pellets with negative 
clearance at  the upstream value of the pressure, Film thicknesses are consider- 
ably reduced, and become especially small for low values of the velocity para- 
meter A .  For higher values, 10-2.5 or more, the values of the resistance parameter 
E may approach such an embarrassingly high level as 0.03. 

The physical significance of A indicates, on the other hand, that such high 
values will be quite exceptional in practical circumstances. If we take 2 J(ro/.) 
as an order-of-magnitude length for the pellet (a formula chosen as being exact 
in the particular case when its shape is spheroidal) then the pressure drop in 
simple Poiseuille flow of fluid along that length of tube, of radius ro, is 

The definition (59) means therefore that 16A represents the fraction of the tube 
radius by which the clearance between tube and pellet would change under this 
modest pressure drop. Accordingly, a value of A as large as 10-2.5 means that the 
velocity U is so great, and either the tube or the pellet is so compliant, that the 
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simple Poiseuille pressure change in fluid flow a t  mean velocity U through the 
tube (without any pellets in it) would already, in a distance equal to a pellet 
length, change the clearance by 0 . 0 5 ~ ~ .  

At the other end of the scale of values of A ,  a fairly large area of the diagram 
in the region where B is negative and A < has been left vacant, partly to 
avoid overcrowding and partly because, although this area is not without its 
importance, the relationships between the parameters become very regular, as 
the curves tend to show. The most interesting feature is the progressive reduction 
in film thickness to very low values as A decreases, and this dependence between 
A and C is shown separately on the left-hand side of figure 7 for two negative 

10 

10-8 
lo-* 10-3 10-2 10-1 10 1 0 2  103  104 

C D 

FIGURE 7. Variation of film-thickness parameter C and resistance parameter D with the 
velocity parameter A for two fixed negative values of the clearance parameter B. 

values of B, - 10-1 and - 10-1.5. Exceedingly low values of C, less than 10-2, 
such as are found for values of the velocity parameter A less than about 10-4.5, 
mean that hydrodynamic lubrication, in requiring film thicknesses less than a 
hundredth of the tube radius, may for more than one reason, discussed below, 
cease to be possible. In  the meantime we may note that it is just the conditions 
described in figure 7 for which the parameter L takes large values (in fact, between 
6 and 250). 

The alternative measure of resistance given by the parameter D relates the 
difference of pressure downstream and upstream of the pellet to the value (64) 
characteristic of flow a t  the same mean velocity U in the absence of pellets. We 
see that values of D large compared with 16 imply resistances much in excess of 
what a length of tube equal to the pellet length would have in the absence of the 
pellet. 

Figure 8 plots D as a function of the clearance parameter B for six different 
values of the velocity parameter A .  It is interesting that for positive clearances 



140 H .  J .  Lighthill 

the resistance parameter is very low indeed (much smaller than 16). This is be- 
cause of the very effective cancelling, in the ‘ small L’ regime, between regions of 
positive pressure gradient where the film thickness is less than 2Q/ U and regions 
of negative gradient where it exceeds 2QIU (see $0 2-4). In  this region,resistance, 
such as it is, increases steadily with increasing velocity. 

L I I I 
-01 -0.05 0 0.05 0- 1 

B 

FIGURE 8. Resistance parameter D plotted as a function of clearance parameter B for a 
range of different values of the velocity parameter A .  

The position changes completely, however, for negative values of the clearance 
parameter B. The resistance parameter D now increases as the velocity parameter 
A decreases. For the lower values of A, furthermore, D is very considerably in 
excess of 16 = 101.2. This means that resistance is increased very many times by 
the fact that very thin films are generated under these circumstances. 

As with figure 6, the results for very low values of A are omitted from figure 8 
for clarity’s sake, being given rather a different form on the right-hand side of 
figure 7. They show that, for a given negative value of the clearance parameter B, 
the resistance parameter D varies as something between A-0.5 and A-0.6. If D 
were independent of A, then pressure difference would be proportional to velocity, 
but its actual dependence means that the pressure difference required to force 
the pellet at velocity U varies as something between UO.4 and UO.5, falling off 
much slower than might have been expected at  the lower velocities. 

A physical interpretation of the results in figure 7 is that, as the film thickness 
h decreases, the pressure gradients to be sustained come to depend more and more 
exclusively on the geometry and elastic properties of the tube and the pellet. 
For given velocity U ,  those pressure gradients need to be balanced by hydro- 
dynamic terms of order ,uU/h2, indicating that film thickness h should vary as 
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JU.  Furthermore, the overall pressure difference, which depends on a skin- 
frictional resistance to the pellet’s motion of order pU/h ,  should also vary ap- 
proximately as $J. 

It is notorious that hydrodynamic lubrication may break down when the 
film thicknesses it requires are excessively small. Reasons for this include the 
effect of roughness elements on the sliding surfaces and failure of exceedingly 
thin layers of fluid to support shear stress. In the physiological application de- 
scribed in 0 1, there is the additional difficulty that local high pressures near the 
tube wall may generate a gradual loss of fluid through the wall. If this operated 
on a layer already thin for lubrication-theory reasons, it is possible that the rear 
part of the layer might thin still further and the motion ‘seize up’ altogether. 

The velocity of flow through the capillaries is probably controlled (see $1) 
mainly by the much greater net resistance of the arterioles upstream. It is pos- 
sible, however, that velocities below a certain minimum value cannot be attained 
because of the failure of hydrodynamic lubrication and consequent ‘ seizing up ’ 
of the capillary motion. 

8. Application of numerical results to motion in the capillaries 
In  applying the model, and the results derived from it, to motion in the capil- 

laries, the hardest quantities for which to choose appropriate values are a and p. 
Rand & Burton (1964) have, however, made studies of the elasticity of red 

cells by finding the pressure difference necessary to draw them into micro- 
pipettes of various diameters. Their studies led them to view the red cell as a 
balloon with skin stretched to a tension of 0-02dynes/cm (that is, in SI units, 
0.02 mN/m). Fung (1966) supports the concept of a fluid-filled stretched mem- 
brane, and emphasizes the many modes of deformation available to a biconcave 
cell of this character as compression a t  one position is balanced against expansion 
at another. 

It is possible to guess only a very rough order-of-magnitude value of a com- 
pliance from such a model. Amongst other things, to apply Hooke’s law locally 
is certainly a very crude approximation, and can only give even order-of- 
magnitude accuracy in terms of the idea of approximating to the true complex 
nature of the compression of the pellet under the action of a non-uniform pres- 
sure distribution by means of an average compliance characteristic of a nearly 
uniform distribution. 

To obtain this from the model, we remember that, where a membrane stretched 
to tension T has K~ and K~ as principal curvatures in two directions at  right angles, 
the pressure difference across it is T ( K ~ + K ~ ) .  Now Rand & Burton (1964) mea- 
sured the change in the larger principal curvature K~ a t  the rim of the pellet (and 
the change in the smaller one K~ can easily be measured from their photographs), 
when the red cell was deformed by a change in osmotic pressure difference across 
the membrane (which should act in much the same way as a change in mechanical 
pressure difference). For a reduction in distance between rim and centre of 
0-46,um the changes in K~ and K~ were 0.28,~m-~ and 0.08,um-1 respectively. 

If this deformation is taken as representative of all the many kinds of changes 
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of  shape that may occur, and we estimate the change in pressure difference 
T ( K ~  + K ~ )  required to cause it as 

(65) (0*02mN/m) (0.36pm-l) = 0-072 mb, 

where 1 mb = 100N/m2, we obtain a compliance 

0.046,um 
0.072 mb 

p = - - 6pm/mb. 

Alternative methods of estimation using Rand & Burton’s data give the same 
order of magnitude for p, and in the absence of other data this will be used in what 
follows. 

By contrast, what has been done on the distensibility of capillary vessels 
indicates a value of a orders of magnitude smaller. Fung (1966) argued that the 
distensibility would be determined mainly by the elasticity of the surrounding 
tissue, which might have typical elastic modulus of order 107dynes/cm2 (or, in 
SI units, 1 MN/m2). The compliance of a cylindrical hole with a radius of a few 
microns in such a medium would be of the order of 10-3pm/mb. In  the absence of 
other information, we may neglect the contribution of a in a + p. 

An order-of-magnitude value for the velocity parameter A can then be 
obtained from (59), taking p as a typical value 0.015 poise (or, in SI units, 
0.0015 Ns/m2) for the viscosity of plasma, and ro = 3pm. The value of K T ~  is diffi- 
cult to estimate, but it seems likely (e.g. from curvature values indicated above) 
to be near 1, and its square root must be still nearer. Approximating the latter 
as 1, we obtain A = 0.01U when U is measured in mm/s, so that, for a typical 
red-cell velocity of 0.1 mm/s, the value of A is 10-3. 

From figure 6, we see that, under conditions of negative clearance, A = 10-3 
corresponds to values of C about 0.06 or 0.07, so that at a velocity of 0.1 mmjs 
the percentage leakback of plasma relative to red cells is estimated as 6 or 7 yo 
in the narrowest capillaries, and a typical film thickness ro as about 0.2pm. For 
velocities less than 0-1 mm/s, the film thickness will fall away from this value of 
0.2 pm in rough proportion (figure 7) to the square root of the velocity. From figure 
8, again under conditions of negative clearance, we see that, when A = 10-3, 
the resistance parameter D takes values close to the typical Poiseuille-resistance 
value 16, while for lower velocities resistance will increase above this Poiseuille 
value in rough proportion to the inverse square root of the velocity. For com- 
ments on the possible significance of such decreases in film thickness and in- 
creases in resistance, see § 1. 

Warmest thanks are due, in conclusion, to all those who have kindly given the 
author help and advice during the preparation of this paper; particularly to Mrs 
N. A. Lighthill for programming the problem of 3 6, and over to Dr Colin Car0 for 
taking great pains in the tendering of physiological advice. 
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